USN

Fourth Semester B.E. Degree Examination, Dec.2013/Jan.2014 Transformers and Induction Machines

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- With the vector diagram, explain operation of practical transformer under no-load and load. 1 b,
 - Write a note on 1- ϕ core type transformer.
 - A 50 KVA, 1-\$\phi\$ transformer has 500 turns on the primary and 100-turns on the secondary. The primary is connected to 250volts, 50Hz supply. Calculate the following neglecting i)
 - The secondary voltage on open circuit.
 - Currents flowing through the windings. ii)
 - Maximum value of flux. iii)
 - If the transformer 50A to a load, what is its impedance. iv)

(07 Marks)

Derive the condition for maximum efficiency of a transformer. 2

- Explain the sumpner's test for testing two 1-\$\phi\$ transformer. Also explain why this is beneficial for finding efficiency of transformer.
- c. Find the all day efficiency of 500KVA distribution transformer whose copper loss and iron loss at full load are 4.5 kW and 3.5 kW respectively. During a day, it is loaded as under.

NI 1 21	CLIVE	y. Duri	ng a o	ıay,
Number of hours	6	10	4	4
Loading in kW	400	300	100	0
Power factor	0.8	0.75	0.8	

- a. Deduce expression for the load shared by two transformers in parallel when no-load voltages (07 Marks) 3 of these transformers are equal. (06 Marks)
 - b. Explain the working principles and construction of constant current transformer.
 - c. Derive an expression for the saving of copper in autotransformer as compared to an equivalent two winding transformer. (07 Marks)
- With the help of connection diagram and phasor diagram, explain how a two phase supply 4 can be obtained from a three-phase supply. (08 Marks)
 - Discuss the conditions that must be satisfied to operate two 3-phase transformer in parallel.

A balanced 3-φ load of 30 KVA, at a p.f. of 0.866 lagging is connected to two transformers connected in open-delta to a five 230V, three-phase system. Find the power delivered by (06 Marks)

PART - B

- What are the advantages of skewed slots in the rotor of squirrel cage induction motor? 5
 - Show that a rotating magnetic field can be produced by the use of 3-\$\phi\$ currents of equal
 - c. Draw the complete torque-sip characteristics of a 3-φ I.M. indicating all the regions and (08 Marks) 1 of 2

6 a. Explain the phenomenon of cogging and crowling in a 3- ϕ induction motor.

(08 Marks)

b. A 415 volts, 40HP, 50Hz, Δ -connected motor gave the following test data:

No-load test	415V,	21A,	1250 Watt
Locked rotor test	100V.	45A,	2730 Watt

Construct the circle diagram and determine:

- i) The line current and power factor for rated output.
- ii) The maximum torque.

Assume stator and rotor copper losses are equal at stand still.

(12 Marks)

- 7 a. With a neat sketch, explain the working of a double-cage induction motor. Draw its equivalent circuit. (10 Marks)
 - b. Explain the working operation of induction generator, with a neat sketch. (10
- 8 a. What is the necessity of starter for a 3-φ I.M? Explain the star-delta (Y-Δ) starter. (07 Marks)
 - b. Why 1-φ LM is not self starting? Explain the working operation of 1-φ capacitor start and (07 Marks) run induction motor.
 - c. Explain any two methods of speed control of three-phase cage type motors. (06 Marks)

* * * * *